1. <progress id="hxdxs"><bdo id="hxdxs"><strong id="hxdxs"></strong></bdo></progress><samp id="hxdxs"><strong id="hxdxs"><u id="hxdxs"></u></strong></samp>
        <samp id="hxdxs"><ins id="hxdxs"><u id="hxdxs"></u></ins></samp>

           首页 >> 科技服务 >> 工作动态

        工作动态

        武汉病毒研究所在电化学生物传感基本原理研究方面取得新进展

        发表日期:2019-09-10来源:武汉病毒研究所放大 缩小
               2019726日,国际学术期刊(《碳电极电化学活化的化学本质》)。该工作揭示了碳素电极电化学活化产生优良性能的化学本质,并从物质材料转化的角度解释了这一过程的发生原理。


        图示:碳素电极电化学活化表面化学演化过程

               碳素电极的电化学活化是电分析化学中一种经典的电极修饰技术,即通过极其廉价而简便的处理方法使基础电极获得多种性能的显著提升。该操作已在电化学(生物)传感领域被广泛作为一种器件预处理方法研究和沿用。人们虽然从多方面对其活化机理进行了逾半个世纪的探究,迄今多种学说仍无法统一认识。本研究选取石墨作为电极模型材料,深入探究了活化处理前后电极表面的形貌、化学属性变化。实验通过多种原位或异位亚显微结构观测及多种光谱学表征发现:在经典的电化学活化过程中,石墨晶格会发生解聚并在电极表面原位生成一层氧化石墨烯分子薄膜。该薄膜随后可被还原,原位转化为还原氧化石墨烯分子层。配合电化学表征实验确认,原位形成的(还原)氧化石墨烯薄膜正是赋予活化后电极高性能的物质基础。该结论与此前报道的电极表面结构变化、活性基团增加、表面物质转化等观点均能相融,是目前最为综合性的一种解释。同时,该认识可用以指导电极表面化学及电化学性质的理性定制,真正将碳素电极的活化处理演化为一种电化学(生物)传感界面可控修饰的新型工艺。

               武汉病毒所博士研究生李一苇为该论文第一作者,张先恩研究员和门冬研究员为共同通讯作者。该研究得到了中国科学院重点研究项目、中国科学院青年创新促进会(的资助。

        文章链接:<SPAN style='"Times New Roman", serif; </div></body></html>

        附件:
        新搬来的女邻居欲求不满
        1. <progress id="hxdxs"><bdo id="hxdxs"><strong id="hxdxs"></strong></bdo></progress><samp id="hxdxs"><strong id="hxdxs"><u id="hxdxs"></u></strong></samp>
            <samp id="hxdxs"><ins id="hxdxs"><u id="hxdxs"></u></ins></samp>